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Status of FE Electronics for ATLAS Pixels

K. Einsweiler, LBNL

Summary of previous results
•Two major rad-soft electronics designs, with many lab and testbeam results.

•System design and many details of FE design validated.

Results from recent DMILL FE run
•Recently received wafers from DMILL engineering run

•Summarize current knowledge of chip operation.

Next steps:
•Re-submission of FE-D engineering run

•Submission of Honeywell SOI FE-H engineering run
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Summary of Previous Results
•Prototyped complete system design (“Demonstrator Progra

detector electronics, using rad-soft commercial processes 

•This program included two FE chips (FE-A/FE-C in AMS 0.
0.8µ), and a module controller chip (MCC in AMS). The pro
chosen to allow natural conversion to TEMIC/DMILL and H
hard processes.

•The FE chips used our final geometry (7.4x11.0mm die size
active area) with 2880 pixels of size 50µ x 400µ, and include
circuit blocks. They were both about 800K transistor chips,
layout. The MCC was a 400K transistor chip which was larg
a “silicon compiler”.

•There were a number of minor errors in all of the chips, but
enough to carry out major prototyping programs over the la
and the H8 testbeam. Single chips with a variety of sensor 
irradiated sensors, were tested in 98. In 99, the emphasis s
chip modules, including the MCC.

•This results confirmed the basic designs and lead us to the r
prototype chips, design of which was started in July 98. We
vendor program, first using DMILL and then using HSOI.
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Overview of DMILL FE Developm
•Began common design in July 98. This work included FE-D

prototype MCC containing many elements of a final design
chips in DMILL (DORICp and VDCp), as well as several ad

•The complete reticle was submitted on Aug. 10 this year, an
to CERN at the end of October (we paid acceleration fee to

•First results on FE-D emerged from wafer probing, and indi
problems. These included a layout error between two capa
have been detected by TEMIC LVS/DRC, and which killed 
generating an internal threshold control voltage. This probl
using FIB surgery.

•Additional problems were found in the digital circuitry, includ
problems in the command decoder (software workarounds 
clock distribution problem. The implications of the clock dis
still being studied.

•All basic chip functions verified, including many aspects of a
Still some concerns about performance in the front-end, inc
dispersion and timewalk. Further studies needed.

•Two serious problems observed with chips. First is yield, an
voltage for digital circuitry. The latter may be largely caused
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Wafer Maps

                          WAFER 07
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•Have analyzed the Pixel Register problem in more detail, u
to divide register into 9 column-pairs, and studying bad col

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9

FE-D wafers 02, 03 and 07

Normalised Poisson distribution for mean = 0.68

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9

Look at d
of bad co
per die.

Remove
bad for o

Find wel
Poisson,

This con
point def
high defe
register a

Suspect 
off-curre
dynamic
about 1 o
fail in this
should n



A T L A S  P i x e l  W e e k , N o v  1 9 9 9

Pixel Electronics Status Dec 7, 1999    6 of 14

o perform FIB 
gister test in order to 
K. Einsweiler          Lawrence Berkeley National Lab

FIB Modification of Wafer #7
•Decided to completely dice the lower half of wafer #7, and t

modification on 15 die with 9 good column pairs in Pixel Re
allow external supply of VTH for front-ends.
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•Modification of each die took about 8 minutes on FIB mach
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Measurements of Digital Readout Ci
•Realized that there is a serious problem with XCK distributi

relatively small transistors in LVDS receiver driving a fanou
large, minimum width, set of busses.



A T L A S  P i x e l  W e e k , N o v  1 9 9 9

Pixel Electronics Status Dec 7, 1999    9 of 14

sion:

he dispersion is 
bout 135e. 

bout the same, but 
r chip shows 
n the noise 
d is often much 
K. Einsweiler          Lawrence Berkeley National Lab

Examples of Analog Scans
•After tuning, see expected improvement in threshold disper

FED-1 VCCD=3600(2.2V) VTHR=3324(2.0V) IF=20 ID=IP=IL=IPS=40

Distribution of Thresholds

Distribution of Noise
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•Do a TOT scan as well to look at dispersion (required increa
to avoid loosing hits with large charge). Used FE-D #1:

•TOT r
quite 

•Units 
intern
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•Have also performed timing studies by injecting a large cha
scanning the delay to find when the hit moves from one cro

FE-D 2 Timing Distribution, IF=12, VCCD=1.6V, Q=60,000e-

Distribution of Time

Timing Map

Timing vs. Channel
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Summary of FE-D and Next Step
Overall comments:

•FE-D requires very high VDD voltage to operate properly (fa
which is acceptable). Limiting factor seems to be data corru
related to XCK of serializer, or relative timing of serializer a
(speculation). Difficult question is to what extent this is a re
XCK distribution, and to what extent it is a separate problem

•There is a very significant yield problem. In the first wafer, o
pass minimal digital tests. It seems very unlikely that this is
our part. The yield problem also appears as a large numbe
defects in each die. Of the chips examined in detail, all hav
individual bad channels, as well as bad column pairs, noisy
None are close to a chip we could use in an ATLAS module

•We cannot evaluate TEMIC as a vendor for pixels based on
this chip. We will work over the next few months to fix all pr
find, and re-submit the chip in a new engineering run. We w
Jan. 00 to discuss our results and possible improvements f

•This will mean significant delay for the pixel “module 0” prog
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Other Results from FE-D Run
•MCC-D0 tested, and appears to be working. The command

prototype FIFO are OK, but the FIFO is not testable at full s
completely incompatible with the defect density observed in
the defects are “generic” and affect all types of circuitry in t

•DORICp tested in preliminary way. Appears to work properl
command data and 40MHz clock), but not at 4V (locks to 20
are available for debugging with probes.

•Analog test chip extensively studied, and many nice results
have been measured.

•Will extract device parameters from PM bar (includes L/W a
devices from front-end). Some indications that the preamp 
expected (as well as timewalk), so want to confirm PMOS 

•Propose that analog test chips are irradiated, along with PM
analog devices used in front-end.

•LVDS buffer will be tested this week using new rad-hard FE
our vehicle for irradiating FE-D chips while they are operati
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Status of FE-H Design
•TAA agreements now essentially in place with all European

•Some design goals are more ambitious for this process, sin
hardness appear better than for DMILL. This includes targe
layer, including 300µ pixels, and increased buffering in EO
occupancy.

•Design work for digital readout has been proceeding for sev
as though time can be saved by developing a standard cel
synthesizing some blocks in the chip.

•Design work just beginning for front-end conversion from D
take about 4 months of work.

•Intend to complete chip for submission in about May 00, bu
community is severely strained by the need to iterate on FE
period.

•Critical paths for the submission are likely to be the front-en
EOC and BOC region where lots of hand-crafted layout wo
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